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Abstract 

In this paper, we present a case-study of utilizing vis-NIR spectroscopy to estimate the content of Soil 

Organic Carbon (SOC) remotely in Northern Greece. In this agricultural area, SOC plays a pivotal role in 

the physical, chemical, and biological function of the soils and hence requires rapid and in situ analysis. 

474 Entisol soil samples were collected from the two top soil horizons. The wet analytical evaluation of 

SOC using the Walkley-Black method yielded an average of 0.6599%, with a standard deviation of 

0.3908%. The reflectance spectra of these soils were acquired across the vis-NIR region (350-2500 nm) in 

the laboratory using a standardization protocol. For the chemometric analysis, three pre-processing methods 

were considered, namely the absorbance transformation, the continuum removal, and the first-derivative. 

We used two state-of-the-art machine learnings algorithms (Partial Least Squares Regression and Cubist), 

to estimate the SOC from the spectra. The best results were achieved using the first derivative, by the Cubist 

algorithm, where an RMSE of 0.1174% was achieved. These results indicate that precise mapping of SOC 

can be achieved with vis-NIR spectroscopy, facilitating the regular updating of SOC maps for sustainable 

agriculture, in line with the Sustainable Development Goals 2.4 and 15.3. 
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Introduction, scope and main objectives 
Soil Organic Carbon (SOC) plays a crucial role in agro-ecosystem function, influencing the productive 

potential of the soil and water holding capacity. The United Nations Statistical Commission’s Interagency and 

the Expert Group on Sustainable Development Goals (SDGs) Indicators agreed on “Proportion of agricultural 

area under productive and sustainable agriculture” and  “Proportion of land that is degraded over total land 

area” as indicators to monitor the SDG 2.4 and 15.3 targets, respectively. Reliable, accurate and timely 

information of SOC stocks at a variety of scales, would help for monitoring and reporting progress towards 

the implementation of the SDG targets.  

 

However, many countries have significant gaps and great level of fragmentation in infrastructure to monitor 

and report these indicators. Building capacity in this regard, provides essential knowledge to farmers, 

environmental policy makers and regional stakeholders, enabling enhanced decision making and effective 

management of natural resources. 

 

The purpose of this paper is to highlight the use of vis-NIR spectroscopy to accurately estimate the SOC of 

soil samples in a regional soil spectral library and simultaneously overcome the shortage of soil data in Greek 

http://unstats.un.org/unsd/statcom/47th-session/documents/2016-2-IAEG-SDGs-Rev1-E.pdf


territory. In particular, only few and sporadic spectra have been recorded in the latest attempt for the 

development of a global soil spectral library (SSL) [1], as well as in the European LUCAS spectral library 

[2]. 

 

Recently, soil spectroscopy has emerged as a fast, simple, and relatively inexpensive way to estimate the 

physical and chemical properties of soil samples [3]. Among the most commonly employed applications of 

soil spectroscopy, is the estimation of SOC (or soil organic matter), which has proven to be accurately 

estimated.  

 

Several papers have already assessed SOC from spectra, but the models are not robust and it is essential to 

generate different models for each area. This is mainly because SOC is a complex material composed of 

varying molecules, strongly dependent on the environmental conditions within the field in question.  

 

The objective of this work is thus to assess the ability of vis-NIR spectroscopy to accurately estimate SOC 

using a vast soil spectral library generated recently in Greece and demonstrate its potential usage. The derived 

models can be used to map the SOC of the entire region without the necessity to measure SOC directly in the 

laboratory and save time and money. To this end, two state of the art machine learning algorithms were used 

to correlate the input vis-NIR spectra with the observable values of SOC. The predictive accuracy of the 

derived models was investigated, to identify the best model. 

  

Methodology 
Initially, a soil spectral library was developed comprised of 474 Entisol soil samples (~250g) from soil 

horizons A (0-30 cm) and B (30-60 cm). These soil samples were collected from the agricultural lands 

surrounding the Nestos river delta, in the Eastern Macedonia and Thrace region, located in northern Greece. 

The Nestos river delta spans a region of roughly 300 square kilometers. From 235 different sampling points 

both layers A and B were sampled, while from 4 sampling points only the top layer was sampled. 

 

The collected samples were subsequently divided into two equal parts. The first half was sent to a chemical 

laboratory, which measured SOC using the Walkley-Black method, and yielded an average of 0.6599%, while 

the standard deviation was 0.3908%. The distribution is positively skewed (1.03). The second half of the soil 

sample was air dried, and gently crushed to pass through a <2 mm sieve. It was subsequently placed into a 

dark chamber, and its reflectance spectrum in the vis-NIR region (350-2500 nm) was collected. The PSR+ 

spectrometer from Spectral Evolution was used, which covers the 350-2500 nm range using a spectral 

resolution of 3 nm at 700 nm, 8 nm at 1500 nm, and 6 nm at 2100 nm. It further provides a data output with 

a 1nm sampling resolution. A standardization procedure was applied to correct from potential nonsystematic 

and systematic spectral variations [4]. 

 

Initially, the 5 first principal components (explaining 99.53% of the variance) of the reflectance spectra were 

used, in order to calculate the Mahalanobis distance of each spectrum. Using the cumulative chi-squared 

distribution, and by applying a threshold of 97.5%, 27 outliers were identified and removed from the dataset. 

Thus, the soil spectral library considered in this study was comprised of a total of 447 soil samples. 

 

The recorded reflectance spectra were then pre-processed using the following independent methods: 1) the 

(pseudo) absorbance transformation (log(1/reflectance)), 2) the continuum removal of the reflectance spectra, 

and 3) the first-derivative of the reflectance spectra using a Savitzky-Golay filter of width 7. To these 4 

datasets (including the initial reflectance spectra), two algorithms were applied, namely Partial Least Squares 

Regression (PLSR), and the Cubist algorithm [5] to correlate the input spectra with the output SOC. The R 

package caret [6] was used to apply these algorithms. 
 

Two sets of experiments were considered. Initially, a 5-fold cross-validation experiment was conducted. Thus, 

one fold was kept for testing the performance of the model, and the rest 4 folds comprised the training set. 



This was repeated 5 times, with each of the fold used once as a testing test. For each training dataset, an 

internal repeated 10-fold experiment (with 5 repetitions) was used to determine the based parameters of the 

algorithms (the latent variables for PLSR, and the number of committees and neighbors for Cubist).  

 

In the second set of experiments, the dataset was split into two parts using the Kennard-Stone algorithm [7]; 

2/3 of the dataset were used to build the model, and 1/3 to validate it. The distance metric used was the 

Mahalanobis distance computed over the principal components’ space. Once again, to select the optimal set 

of parameters for both the algorithms, a repeated 10-fold experiment was conducted. 

 

To compare the generated models, the following measures were calculated in the independent test set (𝑦𝑖 is 

the SOC of the i-th sample, 𝑦𝑖̂ is the predicted SOC for the i-th sample, and 𝑦̅ is the mean SOC of all samples): 
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Results  
The performance of the algorithms using as predictors the different sources is presented in Table 1. We note 

that for the cross-validation experiment, the average results in the testing (prediction) dataset across the folds 

are presented. For PLSR, the average number of latent variables (LV) is also given. Furthermore, for the 

Cubist algorithm the average numbers of committees and neighbours are depicted. The results of the best 

model for both experiments and both algorithms were derived using as a source the first derivative of the 

reflectance spectra. The models developed by Cubist tend to be more accurate, with an average RMSE of 

0.1718 compared to an average RMSE of 0.2377 for the first experiment, and an average RMSE of 0.2410 

compared to an average RMSE of 0.2467 when Kennard-Stone was used. With an RMSE of 0.1174 the model 

created by the Cubist algorithm using the first derivative spectra as the predictors, exhibit the best predictive 

accuracy. 

 

 
5-fold cross-validation 

 
PLSR Cubist 

 
𝑅2 RMSE LV 𝑅2 RMSE Committees Neighbours 

Reflectance 0.6053 0.2460 10.2 0.7977 0.1761 18.0 0.0 

Absorbance 0.6359 0.2363 13.0 0.7714 0.1872 18.0 5.4 

Continuum Removed 0.6192 0.2416 13.2 0.7220 0.2064 16.0 0.0 

First derivative 0.6638 0.2270 11.4 0.9102 0.1174 16.0 9.0 

        

Splitting with Kennard-Stone 

  PLSR    Cubist  

 𝑅2 RMSE LV 𝑅2 RMSE Committees Neighbours 

Reflectance 0.6081 0.2450 10 0.6147 0.2430 20 0 

Absorbance 0.5770 0.2537 10 0.6024 0.2469 20 0 

Continuum Removed 0.5914 0.2471 12 0.6043 0.2463 20 0 

First derivative 0.6216 0.2409 9 0.6613 0.2279 20 9 

Table 1: Results of the derived models for both set of experiments 



 

Discussion 
The above results underscore the fact that vis-NIR spectroscopy can effectively estimate the SOC content. 

The significant difference between the models generated by PLSR and Cubist is attributed to the fact that 

Cubist employs boosted regression trees, i.e. an ensemble of models, each creating local models, while in 

contrast PLSR is a single global model. Moreover, the 5-fold cross-validation experiment generated better 

results over the use of the Kennard-Stone algorithm. This is attributed to the following reasons: a) when a 5-

fold cross-validation experiment is considered, more percentage of the dataset is used in each fold to build the 

model (80% compared to 66.6%), thus more variance is covered, and b) the Kennard-Stone algorithm has 

been shown to not always optimally represent the initial vis-NIR distribution [8]. 

 

Conclusions 
By utilizing vis-NIR SSLs and deploying state-of-the-art machine learning methods, essential information 

can be extracted in order to promote the development of an integrated Nexus framework, supporting the 

strengthening of capacities in the areas of food security monitoring and adaptation to climate change. 

 

Forthcoming relevant activities and outcomes envisaged will be in the direction of extending, improving 

and strengthening the vision for a global SSL. Especially, in less developed countries, where monitoring 

systems for SOC, spanning from the absolute absence of monitoring capacities to the execution of timely 

and high cost field campaigns.  

 

A further step that could be conducted, to ascertain that the model is working correctly, is to compare the 

spectral assignments of the model with the spectral regions that SOC influences the most, as reported in the 

literature. In this context, the encoded information could be the basis for new developments based on Micro 

Electro Mechanical Systems technology, in order to revolutionize the agricultural sector by providing more 

cost-efficient and targeted tools. 

 

As future work, using the best model created, it would be possible precisely map the SOC of the region 

using only the vis-NIR spectra of the soil samples. A common spectral library enabling data interoperability 

and comparability, might help to regularly update digital soil mapping products with better resolution.  
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